Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.4 Exercises - Page 429: 33

Answer

$$I = \frac{{{E_0}}}{R} + C{e^{ - \frac{R}{L}t}}{\text{ }}$$

Work Step by Step

$$\eqalign{ & {\text{We have the differential equation }} \cr & L\frac{{dI}}{{dt}} + RI = E \cr & \frac{{dI}}{{dt}} + \frac{R}{L}I = \frac{E}{L} \cr & {\text{The differential equation has the form }}\frac{{dI}}{{dt}} + P\left( t \right)I = Q\left( t \right) \cr & {\text{With }}P\left( t \right) = \frac{R}{L},{\text{ }}Q\left( t \right) = \frac{E}{L} \cr & {\text{Find the integrating factor }}I\left( x \right) = {e^{\int {Q\left( t \right)} dt}} \cr & I\left( t \right) = {e^{\int {\frac{R}{L}} dt}} = {e^{\frac{R}{L}t}} \cr & {\text{Multiply the differential equation by the integrating factor}} \cr & {e^{\frac{R}{L}t}}\left( {\frac{{dI}}{{dt}} + \frac{R}{L}I = \frac{E}{L}} \right) = \frac{E}{L}{e^{\frac{R}{L}t}} \cr & {e^{\frac{R}{L}t}}\frac{{dI}}{{dt}} + \frac{R}{L}{e^{\frac{R}{L}t}}I = \frac{E}{L}{e^{\frac{R}{L}t}} \cr & {\text{Write the left side in the form }}\frac{d}{{dt}}\left[ {I\left( t \right)P} \right] \cr & \frac{d}{{dt}}\left[ {{e^{\frac{R}{L}t}}I} \right] = \frac{E}{L}{e^{\frac{R}{L}t}} \cr & d\left[ {{e^{\frac{R}{L}t}}I} \right] = \frac{E}{L}{e^{\frac{R}{L}t}}dt \cr & {\text{Integrate both sides}} \cr & {e^{\frac{R}{L}t}}I = \int {\frac{E}{L}{e^{\frac{R}{L}t}}} dt \cr & {e^{\frac{R}{L}t}}I = \frac{{LE}}{{LR}}{e^{\frac{R}{L}t}} + C \cr & {e^{\frac{R}{L}t}}I = \frac{E}{R}{e^{\frac{R}{L}t}} + C \cr & {\text{Solve for }}I \cr & I = \frac{E}{R} + C{e^{ - \frac{R}{L}t}}{\text{ }} \cr & {\text{Let }}E = {E_0} \cr & I = \frac{{{E_0}}}{R} + C{e^{ - \frac{R}{L}t}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.