Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.2 Exercises - Page 335: 73


$\displaystyle \frac{12}{\pi}\ln(2+\sqrt{3})$

Work Step by Step

$A=\displaystyle \int_{a}^{b}f(x)dx$ $A=2\displaystyle \int_{0}^{2}\sec(\frac{\pi x}{6})dx$ Find the indefinite integral. Use the table on page 333. $\displaystyle \int\sec(\frac{\pi x}{6})dx=\left[\begin{array}{ll} u=\frac{\pi}{6}x & \\ du=\frac{\pi}{6}dx & dx=\frac{6}{\pi}du \end{array}\right]=\displaystyle \frac{6}{\pi}\int\sec udu$ $=\displaystyle \frac{6}{\pi}\ln|\sec u+\tan u|+C$ $=\displaystyle \frac{6}{\pi}\ln|\sec(\frac{\pi}{6}x)+\tan(\frac{\pi}{6}x)|+C$ $A=2\left[\frac{6}{\pi}\ln|\sec(\frac{\pi}{6}x)+\tan(\frac{\pi}{6}x)|\right]_{0}^{2}$ $=\displaystyle \frac{12}{\pi}[ \ln|\sec(\frac{\pi}{3})+\tan(\frac{\pi}{3})| - \ln|\sec(0)+\tan(0)|]$ $=\displaystyle \frac{12}{\pi}[ \ln|2+\sqrt{3}| - \ln|1+0|]$ $= \displaystyle \frac{12}{\pi}\ln(2+\sqrt{3})$ Verified with online calculator (
Small 1510508290
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.