Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.1 Exercises - Page 326: 82

Answer

relative maximum: $( e, \displaystyle \frac{1}{e})$ point of inflection: ( $e^{3/2}$ , $\displaystyle \frac{3}{2e^{3/2}}$ )

Work Step by Step

$y=\displaystyle \frac{\ln x}{x}$ Logarithmic functions have a restriction on the domain, the argument must be positive. Domain: $x>0 $ Critical numbers$ (y^{\prime}=0$ or undefined): $y^{\prime}=$ ... quotient rule ... =$ \displaystyle \frac{\frac{1}{x}\cdot x-1\cdot\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}$ $1-\ln x=0$ $\ln x=1$ $x=e$ 0 is not in the domain, so we have one critical number, $x=e$ . Second derivative test: $y^{\prime\prime}=(\displaystyle \frac{1-\ln x}{x^{2}})^{\prime}=\frac{(-\frac{1}{x})\cdot x^{2}-2x(1-\ln x)}{x^{4}}$ $=\displaystyle \frac{x(-1-2+2\ln x}{x^{4}}$ $=\displaystyle \frac{2\ln x-3}{x^{3}}$ which, for x=$e$, is $\displaystyle \frac{2-3}{e^{3}}$, negative So, at $x=e$ $y=\displaystyle \frac{\ln e}{e}=\frac{1}{e},$ we have a relative maximum: $( e, \displaystyle \frac{1}{e})$ Points of inflection: ($y^{\prime\prime}=0)$ $y^{\prime\prime}=\displaystyle \frac{2\ln x-3}{x^{3}}=0$ $2\ln x-3=0$ $\ln x=3/2$ $x=e^{3/2}$ at $x=e^{3/2}$, y=$\displaystyle \frac{\ln e^{3/2}}{e^{3/2}}=\frac{3}{2e^{3/2}}$, so at ( $e^{3/2}$ , $\displaystyle \frac{3}{2e^{3/2}}$ ) there is a point of inflection
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.