Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 290: 90



Work Step by Step

$F(x)=\displaystyle \int_{2}^{x^{2}}\frac{1}{t^{3}}dt=\int_{2}^{x^{2}}t^{-3}dt$ $=[\displaystyle \frac{1}{-2}\cdot t^{-2}]_{2}^{x^{2}}$ $=-\displaystyle \frac{1}{2}x^{-4}+\frac{1}{2\cdot 2^{4}}$ $=-\displaystyle \frac{1}{2}x^{-4}+\frac{1}{8}$ $F(x)=-\displaystyle \frac{1}{2}x^{-4}+\frac{1}{8}$ $F^{\prime}(x)=-\displaystyle \frac{1}{2}(-4x^{-5})=2x^{-5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.