Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.8 Exercises - Page 942: 19

Answer

$${\text{There are no critical numbers}}{\text{.}}$$

Work Step by Step

$$\eqalign{ & z = {e^{ - x}}\sin y \cr & {\text{Let }}z = f\left( {x,y} \right) \cr & f\left( {x,y} \right) = {e^{ - x}}\sin y \cr & {\text{Calculate the first partial derivatives of }}f\left( {x,y} \right) \cr & {f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {{e^{ - x}}\sin y} \right] \cr & {f_x}\left( {x,y} \right) = \sin y\frac{\partial }{{\partial x}}\left[ {{e^{ - x}}} \right] \cr & {f_x}\left( {x,y} \right) = \sin y\left( { - {e^{ - x}}} \right) \cr & {f_x}\left( {x,y} \right) = - {e^{ - x}}\sin y \cr & and \cr & {f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {{e^{ - x}}\sin y} \right] \cr & {f_y}\left( {x,y} \right) = {e^{ - x}}\frac{\partial }{{\partial y}}\left[ {\sin y} \right] \cr & {f_y}\left( {x,y} \right) = {e^{ - x}}\cos y \cr & {\text{Setting both first partial derivatives equal to zero, we have}} \cr & {f_x}\left( {x,y} \right) = 0,{\text{ }}{f_y}\left( {x,y} \right) = 0 \cr & - {e^{ - x}}\sin y = 0,{\text{ }}{e^{ - x}}\cos y = 0 \cr & {e^{ - x}}\sin y = 0,{\text{ }}{e^{ - x}}\cos y = 0 \cr & {e^{ - x}}{\text{ is always positive, so:}}{\text{.}} \cr & \sin y = 0,{\text{ }}\cos y = 0 \cr & {\text{There are no real value }}y{\text{ at which both expressions}} \cr & \sin y = 0{\text{ and }}\cos y = 0{\text{ }}\left( {{\text{graph below}}} \right){\text{ simultaneosly,}} \cr & {\text{so there are no critical numbers}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.