Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.3 Infinite Series - Exercises Set 9.3 - Page 623: 40

Answer

(a) Converges; $S=\frac{{18}}{5}$ (b) Diverges (c) Converges; $S= \frac{1}{2}$

Work Step by Step

(a) $\mathop \sum \limits_{k = 1}^\infty {\left( { - 1} \right)^{k + 1}}{2^k}\cdot{3^{2 - k}}$ 1. By CAS: $\mathop \sum \limits_{k = 1}^\infty {\left( { - 1} \right)^{k + 1}}{2^k}\cdot{3^{2 - k}} = \dfrac{{18}}{5}$ 2. By hand calculation: Write $\mathop \sum \limits_{k = 1}^\infty {\left( { - 1} \right)^{k + 1}}{2^k}\cdot{3^{2 - k}} = \mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^{k + 2}}{2^{k + 1}}\cdot{3^{1 - k}}$ $ = \mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}\left( 2 \right)\left( 3 \right){\left( {\dfrac{2}{3}} \right)^k}$ So, $\mathop \sum \limits_{k = 1}^\infty {\left( { - 1} \right)^{k + 1}}{2^k}\cdot{3^{2 - k}} = \mathop \sum \limits_{k = 0}^\infty 6{\left( { - \dfrac{2}{3}} \right)^k}$. This is a geometric series with $a=3$ and $\left| r \right| = \left| { - \dfrac{2}{3}} \right| \lt 1$. The sum by 9.3.3 Theorem is $\mathop \sum \limits_{k = 1}^\infty {\left( { - 1} \right)^{k + 1}}{2^k}\cdot{3^{2 - k}} = \dfrac{6}{{1 - \left( { - \dfrac{2}{3}} \right)}} = \dfrac{{18}}{5}$ This confirms the result. The series converges. (b) $\mathop \sum \limits_{k = 1}^\infty \dfrac{{{3^{3k}}}}{{{5^{k - 1}}}}$ 1. By CAS: The series: $\mathop \sum \limits_{k = 1}^\infty \dfrac{{{3^{3k}}}}{{{5^{k - 1}}}}$ diverges. 2. By hand calculation: Write $\mathop \sum \limits_{k = 1}^\infty \dfrac{{{3^{3k}}}}{{{5^{k - 1}}}} = \mathop \sum \limits_{k = 0}^\infty \dfrac{{{3^{3k + 3}}}}{{{5^k}}} = \mathop \sum \limits_{k = 0}^\infty \dfrac{{27{{\left( {{3^3}} \right)}^k}}}{{{5^k}}} = \mathop \sum \limits_{k = 0}^\infty 27{\left( {\dfrac{{27}}{5}} \right)^k}$ This is a geometric series with $a=27$ and $\left| r \right| = \dfrac{{27}}{5} \gt 1$. By 9.3.3 Theorem, the series diverges. This confirms the result. (c) $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{4{k^2} - 1}}$ 1. By CAS: $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{4{k^2} - 1}} = \dfrac{1}{2}$ 2. By hand calculation: Write $\dfrac{1}{{4{k^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{1}{{2k - 1}} - \dfrac{1}{{2k + 1}}} \right)$ So, we have $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{4{k^2} - 1}} = \dfrac{1}{2}\mathop \sum \limits_{k = 1}^\infty \left( {\dfrac{1}{{2k - 1}} - \dfrac{1}{{2k + 1}}} \right)$ The $n$th partial sum is $\mathop \sum \limits_{k = 1}^n \dfrac{1}{{4{k^2} - 1}} = \dfrac{1}{2}\left[ {\left( {1 - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{5}} \right) + \left( {\dfrac{1}{5} - \dfrac{1}{7}} \right) + \cdot\cdot\cdot + \left( {\dfrac{1}{{2n - 1}} - \dfrac{1}{{2n + 1}}} \right)} \right]$ $\mathop \sum \limits_{k = 1}^n \dfrac{1}{{4{k^2} - 1}} = \dfrac{1}{2}[(1 + \left( { - \dfrac{1}{3} + \dfrac{1}{3}} \right) + \left( { - \dfrac{1}{5} + \dfrac{1}{5}} \right) + \cdot\cdot\cdot + \left( { - \dfrac{1}{{2n - 1}} + \dfrac{1}{{2n - 1}}} \right) - \dfrac{1}{{2n + 1}}]$ $\mathop \sum \limits_{k = 1}^n \dfrac{1}{{4{k^2} - 1}} = \dfrac{1}{2}\left( {1 - \dfrac{1}{{2n + 1}}} \right)$ Taking the limit: $\mathop \sum \limits_{k = 1}^\infty \dfrac{1}{{4{k^2} - 1}} = \dfrac{1}{2}\mathop {\lim }\limits_{n \to \infty } \left( {1 - \dfrac{1}{{2n + 1}}} \right) = \dfrac{1}{2}\left( {\mathop {\lim }\limits_{n \to \infty } 1 - \mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{2n + 1}}} \right) = \dfrac{1}{2}$ This confirms the result. The series converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.