Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 8 - Mathematical Modeling With Differential Equations - 8.4 First-Order Differential Equations And Applications - Exercises Set 8.4 - Page 592: 8


$$y=x^2-2x $$

Work Step by Step

Given $$x \frac{dy}{dx} - y =x^2,\ \ \ \ \ y(1)=-1$$ Rewriting the equation $$ \frac{dy}{dx} -\frac{1}{x} y=x$$ Since \begin{align*} \mu(x)&=e^{\int \frac{-1}{x} dx}\\ &=e^{-\ln x } \\ &=\frac{1}{x} \end{align*} Then \begin{align*} y\mu(x)&=\int \mu(x) q(x)dx\\ \frac{1}{x}y&=\int dx\\ &= x +c \end{align*} since $y(1)=-1,$ then $c=-2$ Hence $$y=x^2-2x $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.