Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 532: 90

Answer

$$\frac{1}{4}{\sin ^{ - 1}}{x^4} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^3}}}{{\sqrt {1 - {x^8}} }}dx} \cr & {\text{Rewrte the integrand}} \cr & \int {\frac{{{x^3}}}{{\sqrt {1 - {x^8}} }}dx} = \int {\frac{{{x^3}}}{{\sqrt {1 - {{\left( {{x^4}} \right)}^2}} }}dx} \cr & {\text{Let }}u = {x^4} \Rightarrow du = 4{x^3}dx,{\text{ }}dx = \frac{{du}}{{4{x^3}}} \cr & {\text{Applying the substitution}} \cr & \int {\frac{{{x^3}}}{{\sqrt {1 - {{\left( {{x^4}} \right)}^2}} }}dx} = \int {\frac{{{x^3}}}{{\sqrt {1 - {u^2}} }}\frac{{du}}{{4{x^3}}}} \cr & {\text{ }} = \frac{1}{4}\int {\frac{1}{{\sqrt {1 - {u^2}} }}du} \cr & {\text{Integrating}} \cr & \frac{1}{4}\int {\frac{1}{{\sqrt {1 - {u^2}} }}du} = \frac{1}{4}{\sin ^{ - 1}}u + C \cr & {\text{Back - substitute }}u = {x^4} \cr & {\text{ }} = \frac{1}{4}{\sin ^{ - 1}}{x^4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.