Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 6

Answer

$$ - \frac{2}{3}\left( {x + 4} \right)\sqrt {2 - x} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{\sqrt {2 - x} }}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & = \int {\frac{x}{{\sqrt {2 + \left( { - 1} \right)x} }}} dx \cr & {\text{The integrand has a expression in the form }}\sqrt {a + bu} {} \cr & {\text{Use formula 105}} \cr & \left( {105} \right):\,\,\,\,\int {\frac{{udu}}{{\sqrt {a + bu} }}} = \frac{2}{{3{b^2}}}\left( {bu - 2a} \right)\sqrt {a + bu} + C \cr & {\text{let }}u = x,\,\,\,a = 2{\text{ and }}b = - 1 \cr & \int {\frac{x}{{\sqrt {2 + \left( { - 1} \right)x} }}} dx = \frac{2}{{3{{\left( { - 1} \right)}^2}}}\left( {\left( { - 1} \right)x - 2\left( 2 \right)} \right)\sqrt {2 + \left( { - 1} \right)x} + C \cr & {\text{simplifying}} \cr & \int {\frac{x}{{\sqrt {2 + \left( { - 1} \right)x} }}} dx = \frac{2}{3}\left( { - x - 4} \right)\sqrt {2 - x} + C \cr & \int {\frac{x}{{\sqrt {2 + \left( { - 1} \right)x} }}} dx = - \frac{2}{3}\left( {x + 4} \right)\sqrt {2 - x} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.