Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 513: 24

Answer

$$2 - \frac{\pi }{2}$$

Work Step by Step

$$\eqalign{ & \int_{\sqrt 2 }^2 {\frac{{\sqrt {2{x^2} - 4} }}{x}} dx \cr & = \sqrt 2 \int_{\sqrt 2 }^2 {\frac{{\sqrt {{x^2} - 2} }}{x}} dx \cr & {\text{substitute }}x = \sqrt 2 \sec \theta ,{\text{ }}\,\,\,dx = \sqrt 2 \sec \theta \tan \theta d\theta \,\,\,\,\theta = {\sec ^{ - 1}}\left( {\frac{x}{{\sqrt 2 }}} \right) \cr & \,\,\,x = 2 \to \theta = {\sec ^{ - 1}}\left( {\frac{2}{{\sqrt 2 }}} \right) = \pi /4 \cr & \,\,\,x = \sqrt 2 \to \theta = {\sec ^{ - 1}}\left( {\frac{{\sqrt 2 }}{{\sqrt 2 }}} \right) = 0 \cr & \cr & {\text{write the integral in terms of }}\theta \cr & \sqrt 2 \int_{\sqrt 2 }^2 {\frac{{\sqrt {{x^2} - 2} }}{x}} dx = \sqrt 2 \int_0^{\pi /4} {\frac{{\sqrt {2{{\sec }^2}\theta - 2} }}{{\sqrt 2 \sec \theta }}} \left( {\sqrt 2 \sec \theta \tan \theta } \right)d\theta \cr & = 2\int_0^{\pi /4} {\sqrt {{{\sec }^2}\theta - 1} \tan \theta } d\theta \cr & \cr & {\text{use the pythagorean identity }}{\tan ^2} + 1 = {\sec ^2}\theta \cr & = 2\int_0^{\pi /4} {\sqrt {{{\tan }^2}\theta } \tan \theta } d\theta \cr & = 2\int_0^{\pi /4} {{{\tan }^2}\theta } d\theta \cr & = 2\int_0^{\pi /4} {\left( {{{\sec }^2}\theta - 1} \right)} d\theta \cr & = 2\left[ {\tan \theta - \theta } \right]_0^{\pi /4} \cr & \cr & {\text{evaluate the limits}} \cr & = 2\left[ {\tan \left( {\frac{\pi }{4}} \right) - \frac{\pi }{4}} \right] - 2\left[ {\tan \left( 0 \right) - 0} \right] \cr & = 2 - \frac{\pi }{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.