Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 491: 23

Answer

$$ - \frac{1}{4}\ln \left| {\frac{{2 + {e^{ - x}}}}{{2 - {e^{ - x}}}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^{ - x}}}}{{4 - {e^{ - 2x}}}}dx} \cr & = \int {\frac{{{e^{ - x}}dx}}{{{{\left( 2 \right)}^2} - {{\left( {{e^{ - x}}} \right)}^2}}}} \cr & {\text{substitute }}u = {e^{ - x}},{\text{ }} \cr & du = - {e^{ - x}}dx \cr & - du = {e^{ - x}}dx \cr & = \int {\frac{{{e^{ - x}}dx}}{{{{\left( 2 \right)}^2} - {{\left( {{e^{ - x}}} \right)}^2}}}} = \int {\frac{{ - du}}{{{{\left( 2 \right)}^2} - {u^2}}}} \cr & = - \int {\frac{{du}}{{{2^2} - {u^2}}}} \cr & {\text{find the antiderivative }}\left( {{\text{formula 26 page 490}}} \right) \cr & = - \int {\frac{{du}}{{{2^2} - {u^2}}}} = - \frac{1}{{2\left( 2 \right)}}\ln \left| {\frac{{2 + u}}{{2 - u}}} \right| + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = {e^{ - x}} \cr & = - \frac{1}{{2\left( 2 \right)}}\ln \left| {\frac{{2 + {e^{ - x}}}}{{2 - {e^{ - x}}}}} \right| + C \cr & = - \frac{1}{4}\ln \left| {\frac{{2 + {e^{ - x}}}}{{2 - {e^{ - x}}}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.