Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 484: 18

Answer

$${e^{ab}}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{a}{x}} \right)^{bx}},{\text{ }}a,b{\text{ > 0}} \cr & {\text{Evaluating}} \cr & \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{a}{x}} \right)^{bx}} = {\left( {1 + \frac{a}{{ + \infty }}} \right)^\infty } = {1^\infty } \cr & {\text{This limit has the form }}{1^\infty }{\text{ }} \cr & {\left( {1 + \frac{a}{x}} \right)^{bx}} = {e^{bx\ln \left( {1 + \frac{a}{x}} \right)}},{\text{ then}} \cr & \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{a}{x}} \right)^{bx}} = \mathop {\lim }\limits_{x \to + \infty } {e^{bx\ln \left( {1 + \frac{a}{x}} \right)}} = {e^{\mathop {\lim }\limits_{x \to + \infty } bx\ln \left( {1 + \frac{a}{x}} \right)}} \cr & {\text{The first step is to evaluate }} \cr & L = \mathop {\lim }\limits_{x \to + \infty } bx\ln \left( {1 + \frac{a}{x}} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln \left( {1 + \frac{a}{x}} \right)}}{{\frac{1}{{bx}}}} = \frac{0}{0} \cr & {\text{Using the L'Hopital's rule}} \cr & L = \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln \left( {1 + \frac{a}{x}} \right)}}{{\frac{1}{{bx}}}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{{ - \frac{a}{{{x^2}}}}}{{1 + \frac{a}{x}}}}}{{ - \frac{1}{{b{x^2}}}}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{{ - \frac{a}{{{x^2}}}}}{{\frac{{x + a}}{x}}}}}{{ - \frac{1}{{b{x^2}}}}} \cr & L = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{{ - a}}{{x\left( {x + a} \right)}}}}{{ - \frac{1}{{b{x^2}}}}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ab{x^2}}}{{x\left( {x + a} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{abx}}{{x + a}} \cr & \mathop {\lim }\limits_{x \to + \infty } \frac{{abx}}{{x + a}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ab}}{{1 + \frac{a}{x}}} \cr & \mathop {\lim }\limits_{x \to + \infty } \frac{{ab}}{{1 + \frac{a}{x}}} = \frac{{ab}}{{1 + \frac{a}{\infty }}} = ab \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{a}{x}} \right)^{bx}} = \mathop {\lim }\limits_{x \to + \infty } {e^{bx\ln \left( {1 + \frac{a}{x}} \right)}} = {e^{ab}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.