Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.6 Logarithmic And Other Functions Defined By Integrals - Exercises Set 6.6 - Page 461: 47

Answer

$$f\left( x \right) = 2{e^{2x}}{\text{ and }}a = \ln 2$$

Work Step by Step

$$\eqalign{ & 4 + \int_a^x {f\left( t \right)dt} = {e^{2x}} \cr & {\text{Subtract 4 from both sides}} \cr & \int_a^x {f\left( t \right)dt} = {e^{2x}} - 4 \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ {\int_a^x {f\left( t \right)dt} } \right] = \frac{d}{{dx}}\left[ {{e^{2x}} - 4} \right] \cr & f\left( x \right) = 2{e^{2x}} \cr & {\text{Let }}f\left( t \right) = 2{e^{2t}},{\text{ then}} \cr & 4 + \int_a^x {2{e^{2t}}dt} = {e^{2x}} \cr & 4 + \left[ {{e^{2t}}} \right]_a^x = {e^{2x}} \cr & \left[ {{e^{2t}}} \right]_a^x = {e^{2x}} - 4 \cr & {e^{2x}} - {e^{2a}} = {e^{2x}} - 4 \cr & {\text{Solve for }}a \cr & {e^{2a}} = 4 \cr & \ln {e^{2a}} = \ln 4 \cr & 2a = \ln 4 \cr & a = \frac{1}{2}\ln 4 \cr & a = \ln 2 \cr & \cr & {\text{Then, }} \cr & f\left( x \right) = 2{e^{2x}}{\text{ and }}a = \ln 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.