Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 3 - The Derivative In Graphing And Applications - 3.4 Absolute Maxima And Minima - Exercises Set 3.4 - Page 223: 28

Answer

$$\eqalign{ & {\text{max}} = \frac{1}{2}{\text{ at }}x = 5 \cr & {\text{There is no minimum value}}{\text{.}} \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{{x - 2}}{{x + 1}};{\text{ }}\left( { - 1,5} \right] \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{{\left( {x + 1} \right)\left( 1 \right) - \left( {x - 2} \right)\left( 1 \right)}}{{{{\left( {x + 1} \right)}^2}}} \cr & f'\left( x \right) = \frac{{x + 1 - x + 2}}{{{{\left( {x + 1} \right)}^2}}} \cr & f'\left( x \right) = \frac{3}{{{{\left( {x + 1} \right)}^2}}} \cr & f'\left( x \right) = 0 \cr & {\text{There are no real values at which }}f'\left( x \right) = 0 \cr & {\text{Evaluate }}f{\text{ at the end points }}a{\text{ and }}b \cr & f\left( { - 1} \right) = {\text{undefined}} \cr & f\left( 5 \right) = \frac{1}{2} \cr & {\text{The largest value of }}f{\text{ in the interval }}\left( { - 1,5} \right]{\text{ is }}\frac{1}{2},{\text{ so}} \cr & {\text{there is a max}} = \frac{1}{2}{\text{ at }}x = 5 \cr & {\text{There is no minimum value}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.