Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.8 Related Rates - Exercises Set 2.8 - Page 174: 26

Answer

$\frac{8}{9\pi} $ $ft/min$

Work Step by Step

Let $r$ be the radius and $h$ be the height of the conical pile. According to the given condition $h=2r$ ................ eq(1). Let $V$ be the volume of the conical pile. Then $V= \frac {1}{3} \pi r^2 h$ .................... eq (2) From equation (1) $r=\frac{h}{2} $ Putting in equation (2) $V=\frac {1}{3} \pi (\frac{h}{2}) ^2 h=\frac {\pi h^3}{12} $ Taking derivative with respect to t $ \frac{dV}{dt}=\frac{d ( \frac{\pi h^3}{12})}{dt}= \frac{ \pi}{12} \frac{dh^3}{dt}=\frac{\pi}{12} \frac{dh^3}{dh} \frac{dh}{dt}=\frac{3\pi h^2}{12} \frac{dh}{dt}=\frac{\pi h^2}{4} \frac{dh}{dt}$ ............. eq(3) Putting $h=6$ ft, $ \frac{dV}{dt}=8 $ ft/min in equation (3) $ 8=\frac{\pi\times 6^2}{4} \frac{dh}{dt}=9\pi \frac{dh}{dt}$ Or $\frac{dh}{dt}=\frac{8}{9\pi}$ $ft/min$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.