Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 15 - Topics In Vector Calculus - 15.2 Line Integrals - Exercises Set 15.2 - Page 1110: 37

Answer

$\int_{0}^{\pi} \mathbf{F} \cdot d\mathbf{r} = 0$

Work Step by Step

\[ \begin{aligned} \int_{0}^{\pi} \mathbf{F} \cdot d\mathbf{r} &= \int_{0}^{\pi} (x^2\mathbf{i} + xy\mathbf{j}) \cdot (-2\sin{t}\mathbf{i} + 2\cos{t}\mathbf{j}) \, dt \\ &= \int_{0}^{\pi} (-2x^2\sin{t} + 2xy\cos{t}) \, dt \end{aligned} \] Here, \(\mathbf{r} = 2\cos{t}\mathbf{i} + 2\sin{t}\mathbf{j}\), \(x = 2\cos{t}\), and \(y = 2\sin{t}\). Continuing the calculation: \[ \begin{aligned} &= \int_{0}^{\pi} (-24\cos^2{t}\sin{t} + 2 \cdot 4\cos{t}\sin{t}\cos{t}) \, dt \\ &= \int_{0}^{\pi} (-8\cos^2{t}\sin{t} + 8\cos^2{t}\sin{t}) \, dt \\ &= \int_{0}^{\pi} 0 \, dt \\ &= 0 \end{aligned} \] Result: $\int_{0}^{\pi} \mathbf{F} \cdot d\mathbf{r} = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.