Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - Chapter 13 Making Connections - Page 999: 1

Answer

The answer is below.

Work Step by Step

(a) Let us have a function $f(x, y)=z$ which is expressed in polar form: $x=$ $r \cos \theta, r \sin \theta=y$ \[ \begin{aligned} \frac{\partial z}{\partial r} &=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial r} \\ &=\frac{\partial z}{\partial x} \cdot \frac{\partial}{\partial r}(r \cos \theta)+\frac{\partial z}{\partial y} \cdot \frac{\partial}{\partial r}(r \sin \theta) \\ &=\frac{\partial z}{\partial x} \cdot(\cos \theta)+\frac{\partial z}{\partial y} \cdot(\sin \theta) \\ r \frac{\partial z}{\partial r} &=r \cos \theta \frac{\partial z}{\partial x}+r \sin \theta \frac{\partial z}{\partial y} \end{aligned} \] \[ =x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y} \] (b) And: $\frac{\partial z}{\partial \theta}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial \theta}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial \theta}$ $=\frac{\partial z}{\partial x} \cdot \frac{\partial}{\partial \theta}(r \cos \theta)+\frac{\partial z}{\partial y} \cdot \frac{\partial}{\partial \theta}(r \sin \theta)$ $=\frac{\partial z}{\partial x} \cdot(-r \sin \theta)+\frac{\partial z}{\partial y} \cdot(r \cos \theta)$ $\frac{\partial z}{\partial \theta}=-r \sin \theta \frac{\partial z}{\partial x}+r \cos \theta \frac{\partial z}{\partial y}$ $=x \frac{\partial z}{\partial y} -y \frac{\partial z}{\partial x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.