Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.4 Differentiability, Differentials, And Local Linearity - Exercises Set 13.4 - Page 949: 61

Answer

$39.25 \mathrm{ft}^{2}$

Work Step by Step

We are given that the area $(A)$ of triangle where $a$ and b are the lengths of the two sides and $\theta$ is the included angle: \[ \frac{1}{2} a b \sin \theta=A \] So: \[ (a \sin \theta d b+b \sin \theta d a+a b \cos \theta d \theta)\frac{1}{2}=d A \] Both sides are divided by area: \[ \frac{1}{2}\left(\frac{d \theta}{\tan \theta}+\frac{d b}{b}+\frac{d a}{a}\right)=\frac{d A}{A} \] Given the error in $\theta$ is very small, we can write $\tan \theta$ as $\theta$ \[ \begin{array}{l} \frac{d A}{A}\left|=\frac{1}{2}\left(\left|\frac{d \theta}{\theta}+\frac{d b}{b}+\frac{d a}{a}\right|\right)\right. \\ \frac{d A}{A}\left|\leq \frac{1}{2}\left(\left|\frac{d \theta}{\theta}\right|+\left|\frac{d b}{b}\right|+\left|\frac{d a}{a}\right|\right)\right. \end{array} \] We are given the maximum errors in a, b and $\theta$ are \[ \left|\frac{d \theta}{\theta}\right|=2^{\circ}=\frac{\pi}{90} \] \[ \begin{array}{l} \frac{1}{4} =\left|\frac{d b}{b}\right|\\ \frac{1}{2} =\left|\frac{d a}{a}\right|\\ \frac{d A}{A} | \leq \frac{1}{2}\left(\frac{\pi}{90}+\frac{1}{4}+\frac{1}{2}\right) \\ \frac{d A}{A} | \leq 0.3925 \end{array} \] $39.25 \mathrm{ft}^{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.