Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - 13.3 Partial Derivatives - Exercises Set 13.3 - Page 939: 80

Answer

\[ \begin{array}{l} -\sin (x+y)^{3}+\sin (x-y)^{3}= f_{x}(x, y)\\ -\left(\sin (-y+x)^{3}+\sin (y+x)^{3}\right)=f_{y}(x, y) \end{array} \]

Work Step by Step

We are given that \[ \int_{x+y}^{x-y} \sin t^{3} d t=f(x, y) \] We know that \[ f_{x}(x, y)=\frac{\partial}{\partial x}\left(\int_{x+y}^{x-y} \sin t^{3} d t\right) \] \[ \int_{h(x)}^{g(x)} f(t) d t=f(x) \] and then \[ g^{\prime}(x) \int(g(x))-h^{\prime}(x) f(h(x))=f^{\prime}(x) \] Thus \[ \begin{array}{l} \frac{d}{d x}(x-y) * \sin (x-y)^{3}-\frac{d}{d x}(x+y) * \sin (x+y)^{3}=f_{x}(x, y) \\ -\sin (x+y)^{3}+\sin (x-y)^{3}=f_{x}(x, y) \end{array} \] We obtain $f_{y}(x, y)$ \[ f_{y}(x, y)=\frac{d}{d y}(-y+x) * \sin (-y+x)^{3}-\frac{d}{d y}(y+x) * \sin (y+x)^{3} \] \[ -\left(\sin (-y+x)^{3}+\sin (y+x)^{3}\right)=f_{y}(x, y) \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.