Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.1 Introduction To Vector-Valued Functions - Exercises Set 12.1 - Page 845: 1

Answer

$-\infty < t < \infty$ $\mathbf{r}(\pi) = -\mathbf{i} - 3\pi\mathbf{j}$.

Work Step by Step

Step 1 Given the vector function, the standard form of a vector function can be given as: \[ \mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} \] Now compare the two functions together: \[ \cos(t)\mathbf{i} - 3t\mathbf{j} \] The parametric equations can be represented as: \[ x(t) = \cos(t) \quad \text{(1)} \] \[ y(t) = -3t \quad \text{(2)} \] Step 2 The natural domains of the component functions, which are (1) and (2), are: \[ (-\infty, \infty) \quad \text{and} \quad (-\infty, \infty) \] So, the natural domain of $\mathbf{r}(t)$ consists of all values of $t$ such that $-\infty < t < \infty$. Step 3 Now, replace $t$ with $t_0$ to find the value of $\mathbf{r}(t_0)$. We have: \[ \mathbf{r}(t_0) = \cos(t_0)\mathbf{i} - 3t_0\mathbf{j} \] Then, substitute $t_0 = \pi$ in $\mathbf{r}(t_0)$. We have: \[ \mathbf{r}(\pi) = (\cos(\pi))\mathbf{i} - (3\pi)\mathbf{j} = (-1)\mathbf{i} - (3\pi)\mathbf{j} \] Therefore, the domain of $\mathbf{r}(t)$ is $-\infty < t < \infty$, and $\mathbf{r}(\pi) = (-1)\mathbf{i} - (3\pi)\mathbf{j}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.