Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.4 Limits (Discussed More Rigorously) - Exercises Set 1.4 - Page 87: 2

Answer

(a) $(-0.05, 0.05)$ (b) $(-0.005, 0.005)$ (c) $(-0.0006, 0.00006)$

Work Step by Step

Step 1 We want x such that $∣2π‘₯+3βˆ’π‘“(0)∣<πœ–βŸΊβˆ£2π‘₯+3βˆ’3∣<πœ–$ β€…$⟺∣2π‘₯∣<πœ–$ $⟺2∣π‘₯∣<πœ–$ β€…$⟺∣π‘₯∣<πœ–/2$ $β€…βŸΊπ‘₯∈(βˆ’πœ–/2,πœ–/2)$ STEP 2: Thus, the largest interval centered at $x = 0$ such that $|2x+3βˆ’ Ζ’ (0)| <πœ–$ for different πœ– is (a) $πœ–= 0.1; (-0.05, 0.05)$ (b) $ πœ– =0.01; (-0.005, 0.005)$ (c) $ πœ– =0.0012; (-0.0006, 0.00006)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.