Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.3 Limits At Infinity; End Behavior Of A Function - Exercises Set 1.3 - Page 79: 7

Answer

$\lim_\limits{x\to +\infty}f(x)$ should be $1$. Or, $\lim_\limits{x\to +\infty}f(x)=1$

Work Step by Step

We have given $f(x)=\dfrac{\sqrt{x^2+x}}{x+1}$ Substitute $x=10$ We get, $f(x)=\dfrac{\sqrt{10^2+10}}{10+1}=\dfrac{\sqrt{100+10}}{11}=0.953462589246$ Substitute $x=100$ We get, $f(x)=\dfrac{\sqrt{100^2+100}}{100+1}=\dfrac{\sqrt{10000+100}}{101}=0.99503719021$ Substitute $x=1000$ We get, $f(x)=\dfrac{\sqrt{1000^2+1000}}{1000+1}=\dfrac{\sqrt{1000000+1000}}{1001}=0.999500374688$ Substitute $x=10000$ We get, $f(x)=\dfrac{\sqrt{10000^2+10000}}{10000+1}=\dfrac{\sqrt{100000000+10000}}{10001}=0.99995000375$ Substitute $x=100000$ We get, $f(x)=\dfrac{\sqrt{100000^2+100000}}{100000+1}=\dfrac{\sqrt{10000000000+100000}}{100001}=0.999995000037$ Substitute $x=1000000$ We get, $f(x)=\dfrac{\sqrt{1000000^2+1000000}}{1000000+1}=\dfrac{\sqrt{1000000000000+1000000}}{1000001}=0.9999995$ So, we get that if $x$ increases the value of function $f(x)$ gets closer and closer to $1$. Therefore, if $x$ increases without bound $f(x)$ should approaches $1$. Hence, $\lim_\limits{x\to +\infty}f(x)$ should be $1$. Or, $\lim_\limits{x\to +\infty}f(x)=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.