Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.1 Limits (An Intuitive Approach) - Exercises Set 1.1 - Page 60: 13

Answer

$(a) \lim_{x\to1}\frac{x-1}{x^3-1} = \frac{1}{3},\\[6pt] (b) \lim_{x\to1^+}\frac{x+1}{x^3-1} = +\infty,\\[6pt] (c) \lim_{x\to1^-}\frac{x+1}{x^3-1} = -\infty.$

Work Step by Step

(a) $\lim_{x\to1}\frac{x-1}{x^3-1}$ Evaluating numerically: \[ f(x)=\frac{x-1}{x^3-1} \] \[ \begin{array}{c|cccccccccc} x & 0 & 0.5 & 0.9 & 0.99 & 0.999 & 1.001 & 1.01 & 1.1 & 1.5 & 2 \\ \hline f(x) & 1.000 & 0.571 & 0.369 & 0.337 & 0.334 & 0.333 & 0.330 & 0.302 & 0.211 & 0.143 \end{array} \] As \(x \to 1\), \(f(x)\) approaches approximately \(0.333\). Algebraic (CAS) verification: \[ x^3-1=(x-1)(x^2+x+1) \] \[ \frac{x-1}{x^3-1}=\frac{1}{x^2+x+1}, \quad x\ne1 \] \[ \therefore \lim_{x\to1}\frac{x-1}{x^3-1}=\frac{1}{1^2+1+1}=\frac{1}{3}. \] \[ \boxed{\lim_{x\to1}\frac{x-1}{x^3-1}=\tfrac{1}{3}} \] (b) \(\displaystyle \lim_{x\to1^+}\frac{x+1}{x^3-1}\)} Numerical evaluation:} \[ \begin{array}{c|cccccc} x & 1.0001 & 1.001 & 1.01 & 1.1 & 1.5 & 2 \\ \hline f(x) & 6666.33 & 666.33 & 66.33 & 6.34 & 1.05 & 0.43 \end{array} \] As \(x\to1^+\), \(f(x)\to+\infty.\) Reasoning:} Since \(x^3-1=(x-1)(x^2+x+1)\), for \(x>1\), the denominator is a small positive number, and \(x+1>0\). Hence, \(f(x)\) grows without bound: \[ \boxed{\lim_{x\to1^+}\frac{x+1}{x^3-1}=+\infty.} \] (c) $lim_{x\to1^-}\frac{x+1}{x^3-1}$ Numerical evaluation: \[ \begin{array}{c|cccccc} x & 0 & 0.5 & 0.9 & 0.99 & 0.999 & 0.9999 \\ \hline f(x) & -1.00 & -1.71 & -7.01 & -67.00 & -667.00 & -6667.00 \end{array} \] As \(x\to1^-\), \(f(x)\to-\infty.\) (iii) Reasoning: For \(x<1\), \(x-1<0\) and \(x^2+x+1>0\), so \(x^3-1<0\) while \(x+1>0\). Thus, the quotient tends to a large negative number: \[ \boxed{\lim_{x\to1^-}\frac{x+1}{x^3-1}=-\infty.} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.