Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 8 - Section 8.1 - Arc Length - 8.1 Exercises - Page 567: 53

Answer

The length for the given curve is given by $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{1+\left[y^{\prime}(t)\right]^{2}} d t \\ &=\int_{1}^{4} \sqrt{x^{3}} d x \\ &=12.4 \end{aligned} $$

Work Step by Step

$$ y=\int_{1}^{x} \sqrt{t^{3}-1} d t , \quad 1 \leq x \leq 4 $$ $\Rightarrow$ $$ y^{\prime} =\sqrt{x^{3}-1} $$ $\Rightarrow$ $$ \begin{aligned} 1+\left(y^{\prime}\right)^{2}&=1+(\sqrt{x^{3}-1} )^{2} \\ &= x^{3} \\ \end{aligned} $$ So, the length for the given curve is given by $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{1+\left[y^{\prime}(t)\right]^{2}} d t \\ &=\int_{1}^{4} \sqrt{x^{3}} d x \\ &=\int_{1}^{4} x^{3 / 2} d x \\ &=\frac{2}{5}\left[x^{5 / 2}\right]_{1}^{4} \\ &=\frac{2}{5}(32-1) \\ &=\frac{62}{5} \\ &=12.4 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.