Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 8 - Review - Exercises - Page 601: 16

Answer

$\left( {\overline x ,\overline y } \right) = \left( {\frac{1}{2}\pi ,\frac{{\left( {\pi + 2} \right)\sqrt 2 }}{{16}}} \right)$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( x \right) = \sin x{\text{ and }}g\left( x \right) = 0,{\text{ }}\frac{\pi }{4} \leqslant x \leqslant \frac{{3\pi }}{4} \cr & \cr & {\text{*The mass of the lamina is }} \cr & m = \rho \int_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx \cr & m = \rho \int_{\pi /4}^{3\pi /4} {\left( {\sin x - 0} \right)} dx \cr & m = \rho \int_{\pi /4}^{3\pi /4} {\sin x} dx \cr & m = \rho \left[ { - \cos x} \right]_{\pi /4}^{3\pi /4} \cr & m = - \rho \left[ {\cos \left( {\frac{{3\pi }}{4}} \right) - \cos \left( {\frac{\pi }{4}} \right)} \right] \cr & m = - \rho \left( { - \frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2}} \right) \cr & m = \sqrt 2 \rho \cr & \cr & *{\text{The moment about the }}x{\text{ - axis is}} \cr & {M_x} = \rho \int_a^b {\left[ {\frac{{f\left( x \right) + g\left( x \right)}}{2}} \right]} \left[ {f\left( x \right) - g\left( x \right)} \right]dx \cr & {M_x} = \rho \int_{\pi /4}^{3\pi /4} {\left[ {\frac{{\sin x}}{2}} \right]} \left[ {\sin x} \right]dx \cr & {M_x} = \frac{1}{2}\rho \int_{\pi /4}^{3\pi /4} {{{\sin }^2}x} dx \cr & {M_x} = \frac{1}{2}\rho \int_{\pi /4}^{3\pi /4} {\frac{{1 - \cos 2x}}{2}} dx \cr & {M_x} = \frac{1}{4}\rho \int_{\pi /4}^{3\pi /4} {\left( {1 - \cos 2x} \right)} dx \cr & {M_x} = \frac{1}{4}\rho \left[ {x - \frac{1}{2}\sin 2x} \right]_{\pi /4}^{3\pi /4} \cr & {M_x} = \frac{1}{4}\rho \left[ {\frac{\pi }{4} - \frac{1}{2}\sin 2\left( {\frac{{3\pi }}{4}} \right)} \right] - \frac{1}{4}\rho \left[ {\frac{\pi }{4} - \frac{1}{2}\sin 2\left( {\frac{\pi }{4}} \right)} \right] \cr & {M_x} = \frac{1}{4}\rho \left( {\frac{{3\pi }}{4} + \frac{1}{2}} \right) - \frac{1}{4}\rho \left( {\frac{\pi }{4} - \frac{1}{2}} \right) \cr & {M_x} = \frac{{3\pi }}{{16}}\rho + \frac{1}{8}\rho - \frac{\pi }{{16}}\rho + \frac{1}{8}\rho \cr & {M_x} = \frac{\pi }{8}\rho + \frac{1}{4}\rho \cr & {M_x} = \left( {\frac{\pi }{8} + \frac{1}{4}} \right)\rho \cr & \cr & *{\text{The moment about the }}y{\text{ - axis is}} \cr & {M_y} = \rho \int_a^b x \left[ {f\left( x \right) - g\left( x \right)} \right]dx \cr & {M_y} = \rho \int_{\pi /4}^{3\pi /4} x \left[ {\sin x - 0} \right]dx \cr & {M_y} = \rho \int_{\pi /4}^{3\pi /4} {x\sin x} dx \cr & {M_y} = \rho \left[ {\sin x - x\cos x} \right]_{\pi /4}^{3\pi /4} \cr & {M_y} = \rho \left[ {\sin \left( {\frac{{3\pi }}{4}} \right) - \left( {\frac{{3\pi }}{4}} \right)\cos \left( {\frac{{3\pi }}{4}} \right)} \right] \cr & - \rho \left[ {\sin \left( {\frac{\pi }{4}} \right) - \left( {\frac{\pi }{4}} \right)\cos \left( {\frac{\pi }{4}} \right)} \right] \cr & {M_y} = \rho \left( {\frac{{\sqrt 2 }}{2} + \frac{{3\sqrt 2 }}{8}\pi } \right) - \rho \left( {\frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{8}\pi } \right) \cr & {M_y} = \frac{{\sqrt 2 }}{2}\rho + \frac{{3\sqrt 2 }}{8}\pi \rho - \frac{{\sqrt 2 }}{2}\rho + \frac{{\sqrt 2 }}{8}\pi \rho \cr & {M_y} = \frac{{\sqrt 2 \pi }}{2}\rho \cr & \cr & *{\text{The coordinates }}\left( {\overline x ,\overline y } \right){\text{ of the centroid are:}} \cr & \overline x = \frac{{{M_y}}}{m} = \frac{{\frac{{\sqrt 2 \pi }}{2}\rho }}{{\sqrt 2 \rho }} = \frac{1}{2}\pi \cr & \overline y = \frac{{{M_x}}}{m} = \frac{{\left( {\frac{\pi }{8} + \frac{1}{4}} \right)\rho }}{{\sqrt 2 \rho }} = \frac{{\left( {\frac{{\pi + 2}}{8}} \right)\rho }}{{\sqrt 2 \rho }} = \frac{{\left( {\pi + 2} \right)\sqrt 2 }}{{16}} \cr & \left( {\overline x ,\overline y } \right) = \left( {\frac{1}{2}\pi ,\frac{{\left( {\pi + 2} \right)\sqrt 2 }}{{16}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.