Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 8 - Problems Plus - Page 602: 1

Answer

The area of the region $$ S=\left\{(x, y) | x \geq 0, y \leq 1, x^{2}+y^{2} \leq 4 y\right\} $$ is equal to $$ \frac{2 \pi}{3}-\frac{\sqrt{3}}{2}$$

Work Step by Step

The area of $S$ can be determined without Calculus as follows: Note that $$ \theta=\angle C A B=\frac{\pi}{3},$$ so the area is $$ \begin{split} S & =\text { area of sector } O A B)-(\text { area of } \triangle A B C) \\ & = \frac{1}{2}\left(2^{2}\right) \frac{\pi}{3}-\frac{1}{2}(1) \sqrt{3} \\ &=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2} \end{split} $$ So the area of the region $$ S=\left\{(x, y) | x \geq 0, y \leq 1, x^{2}+y^{2} \leq 4 y\right\} $$ is equal to $$ \frac{2 \pi}{3}-\frac{\sqrt{3}}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.