Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.5 - Strategy for Integration - 7.5 Exercises - Page 523: 75

Answer

$$\int \frac{1}{\sqrt{x+1}+\sqrt{x}}dx=\frac{2}{3}\left [ (x+1)^{\frac{3}{2}}-x^{\frac{3}{2}} \right ]+C$$

Work Step by Step

$$\int \frac{1}{\sqrt{x+1}+\sqrt{x}}dx$$ $$=\int \frac{1}{\sqrt{x+1}+\sqrt{x}}\cdot \frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}dx$$ $$=\int (\sqrt{x+1}-\sqrt{x})dx=\frac{2}{3}\left [ (x+1)^{\frac{3}{2}}-x^{\frac{3}{2}} \right ]+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.