Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.1 - Integration by Parts - 7.1 Exercises - Page 492: 79

Answer

a) See the explanation. b) $\int \frac{\ln x}{x^2}dv=-\frac{\ln x}{x}-\frac{1}{x}+C$

Work Step by Step

Part a) Here is the Quotient Rule: $\frac{d(\frac{u}{v})}{dx}=\frac{\frac{du}{dx}\cdot v-u\cdot \frac{dv}{dx}}{v^2}$ Equivalently, $\frac{d(\frac{u}{v})}{dx}=\frac{1}{v}\frac{du}{dx}-\frac{u}{v^2}\frac{dv}{dx}$ Multiplying both sides with $dx$, $d(\frac{u}{v})=\frac{1}{v}du-\frac{u}{v^2}dv$ Integrating both sides, $\int d(\frac{u}{v})=\int \frac{1}{v}du-\int \frac{u}{v^2}dv$ $\frac{u}{v}=\int \frac{1}{v}du-\int \frac{u}{v^2}dv$ Thus, $\int \frac{u}{v^2}dv=-\frac{u}{v}+\int \frac{1}{v}du$ Part b) Take $u=\ln x$ and $v=x$. Then, $\int \frac{\ln x}{x^2}dv=-\frac{\ln x}{x}+\int \frac{1}{x}\cdot \frac{1}{x}dx$ $\int \frac{\ln x}{x^2}dv=-\frac{\ln x}{x}+\int \frac{1}{x^2}dx$ $\int \frac{\ln x}{x^2}dv=-\frac{\ln x}{x}-\frac{1}{x}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.