Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Review - Concept Check - Page 552: 5

Answer

The statement is false: $$ \int_{0}^{4} \frac{x}{x^{2}-1} d x $$ Observe that the given integral is improper because $ f(x)= \frac{x}{x^{2}-1}$ has the vertical asymptote $x=1$. The infinite discontinuity occurs at the middle of the interval $ [0,4] $ at $x = 1$, The given improper integral $$ \int_{0}^{4} \frac{x}{x^{2}-1} d x= \infty $$ is divergent.

Work Step by Step

$$ \int_{0}^{4} \frac{x}{x^{2}-1} d x $$ Observe that the given integral is improper because $ f(x)= \frac{x}{x^{2}-1}$ has the vertical asymptote $x=1$. Since the infinite discontinuity occurs at the middle of the interval $ [0,4] $ at $x = 1$, we must use part (c) of Definition 3 with $ c=1 $: $$ \int_{0}^{4} \frac{x}{x^{2}-1} d x=\int_{0}^{1} \frac{x}{x^{2}-1} d x +\int_{1}^{4} \frac{x}{x^{2}-1} d x $$ where $$ \begin{split} \int_{0}^{1} \frac{x}{x^{2}-1} d x& = \lim _{t \rightarrow 1^{-}} \int_{0}^{t} \frac{x}{x^{2}-1} d x \\ & =\lim _{t \rightarrow 1^{-}}\left[\frac{1}{2} \ln \left|x^{2}-1\right|\right]_{0}^{t} \\ & =\lim _{t \rightarrow 1^{-}} \frac{1}{2} \ln \left|t^{2}-1\right| \\ & =\infty, \end{split} $$ so the integral $$ \int_{0}^{1} \frac{x}{x^{2}-1} d x $$ is divergent, and the given improper integral, $$ \int_{0}^{4} \frac{x}{x^{2}-1} d x $$ is divergent. Thus the statement is False.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.