Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 6 - Section 6.3 - Volumes by Cylindrical Shells - 6.3 Exercises - Page 466: 49

Answer

$\left( {\text{a}} \right)\int_0^\pi {\pi \sin x} dx,{\text{ }}\left( {\text{b}} \right)2\pi $

Work Step by Step

$$\eqalign{ & {\text{From the graph we have:}} \cr & y = \sqrt {\sin x} {\text{ on the interval }}0 \leqslant x \leqslant \pi \cr & \cr & \left( {\text{a}} \right){\text{Using the disk method about the }}x{\text{ - axis}} \cr & V = \int_a^b {\pi {{\left[ {f\left( x \right)} \right]}^2}} dx \cr & {\text{Therefore}}{\text{,}} \cr & V = \int_0^\pi {\pi {{\left[ {\sqrt {\sin x} } \right]}^2}} dx \cr & V = \int_0^\pi {\pi \sin x} dx \cr & \cr & \left( {\text{b}} \right) \cr & {\text{Integrating}} \cr & V = \pi \left[ { - \cos x} \right]_0^\pi \cr & {\text{Evaluating}} \cr & V = \pi \left[ { - \cos \pi + \cos 0} \right] \cr & V = \pi \left( {1 + 1} \right) \cr & V = 2\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.