Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 6 - Section 6.3 - Volumes by Cylindrical Shells - 6.3 Exercises - Page 465: 9

Answer

$V = \frac{{128\pi }}{5}$

Work Step by Step

$$\eqalign{ & y = \sqrt x ,{\text{ }}y = 0,{\text{ }}x = 4 \cr & {\text{Apply the shell method about the }}y{\text{ - axis}}{\text{.}} \cr & V = \int_a^b {2\pi x} f\left( x \right)dx,{\text{ where }}0 \leqslant a \leqslant b \cr & {\text{Therefore}}{\text{,}} \cr & V = \int_0^4 {2\pi x\left( {\sqrt x } \right)} dx \cr & V = 2\pi \int_0^4 {{x^{3/2}}} dx \cr & {\text{Integrating}} \cr & V = 2\pi \left[ {\frac{{{x^{5/2}}}}{{5/2}}} \right]_0^4 \cr & V = \frac{{4\pi }}{5}\left[ {{x^{5/2}}} \right]_0^4 \cr & {\text{Evaluating}} \cr & V = \frac{{4\pi }}{5}\left[ {{{\left( 4 \right)}^{5/2}} - {{\left( 0 \right)}^{5/2}}} \right] \cr & V = \frac{{4\pi }}{5}\left( {32 - 0} \right) \cr & V = \frac{{128\pi }}{5} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.