Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 6 - Section 6.1 - Areas Between Curves - 6.1 Exercises - Page 442: 2

Answer

a) $A = \int_0^1 {\left( {{e^x} - {x^2}} \right)} dx$ b) $A = e - \frac{4}{3}$

Work Step by Step

$$\eqalign{ & {\text{From the graph we can see that }}y = {e^x}{\text{ is above }}y = {x^2},{\text{ }} \cr & {\text{Let }}f\left( x \right) = {e^x}{\text{ and }}g\left( x \right) = {x^2}{\text{, on the interval }}\left[ {0,1} \right] \cr & \cr & \left( {\text{a}} \right){\text{Use }}A = \int_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx,{\text{ with }}f\left( x \right) \geqslant g\left( x \right) \cr & x = a = 0{\text{ and }}x = b = 1 \cr & {\text{Therefore}}{\text{,}} \cr & \underbrace {A = \int_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx}_ \Downarrow \cr & A = \int_0^1 {\left( {{e^x} - {x^2}} \right)} dx \cr & \cr & \left( {\text{b}} \right) \cr & {\text{Integrate}} \cr & A = \left[ {{e^x} - \frac{1}{3}{x^3}} \right]_0^1 \cr & A = \left[ {{e^1} - \frac{1}{3}{{\left( 1 \right)}^3}} \right] - \left[ {{e^0} - \frac{1}{3}{{\left( 0 \right)}^3}} \right] \cr & {\text{Simplify}} \cr & A = e - \frac{1}{3} - 1 \cr & A = e - \frac{4}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.