Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Problems Plus - Problems - Page 433: 1

Answer

$f(4)=\frac{\pi}{2}$

Work Step by Step

$x\sin \pi x=\int_0^{x^2}f(t)dt$ (Differentiate with respect to $x$) $\frac{d}{dx}(x\sin \pi x)=\frac{d}{dx}\int_0^{x^2}f(t)dt$ (Apply the Product Rule) $\frac{d}{dx}(x)\cdot \sin (\pi x)+x\cdot \frac{d}{dx}(\sin \pi x)=\frac{d}{dx}\int_0^{x^2}f(t)dt$ (Apply the Chain Rule) $1\cdot \sin (\pi x)+x\cdot \pi (\cos \pi x)=\frac{d}{dx}(x^2)\cdot \frac{d}{d(x^2)}\int_0^{x^2}f(t)dt$ (Use the Fundamental Theorem of Calculus in Part 1) $\sin (\pi x)+\pi x\cos \pi x=2x\cdot f(x^2)$ (Replace $x$ by $2$) $\sin (2\pi)+2\pi \cos (2\pi)=2\cdot 2\cdot f(2^2)$ (Simplify) $0+2\pi \cdot 1=4f(4)$ $2\pi =4f(4)$ $f(4)=\frac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.