Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.8 - Newton''s Method - 4.8 Exercises - Page 355: 13

Answer

a) Intermediate Value Theorem: since f is a polynomial and continuous, and f ( 2 ) < 0 and f ( 3 ) > 0, then there exists a number such that f ( c ) = 0 . b) $x_{5}$ ≈ $x_{6}$ ≈ 2.630020

Work Step by Step

Work for a: f ( 2 ) = 3$( 2 )^{4}$ – 8( 2 )³ + 2 f ( 2 ) = 3*16 – 8*8 + 2 f ( 2 ) = 48 – 64 + 2 f ( 2 ) = - 14 f ( 3 ) = 3$( 3 )^{4}$ – 8( 3 )³ + 2 f ( 3 ) = 3 * 81 – 8 * 27 + 2 f ( 3 ) = 243 – 216 + 2 f ( 3 ) = 29 a) Intermediate Value Theorem: since f is a polynomial and continuous, and f ( 2 ) < 0 and f ( 3 ) > 0, then there exists a number such that f ( c ) = 0 . Work for b: f ( x ) = 3$x^{4}$ – 8x³ + 2 f ‘( x ) = 12x³ – 24x² f ‘( x ) = 12x²( x – 2 ) $x_{2}$ = $x_{1}$ - $\frac{3x^{4} – 8x³ + 2}{12x²( x – 2 )}$ Since the root is between f ( 2 ) and f ( 3 ) , let $x_{1}$ = 2.5 $x_{2}$ = ( 2.5 ) - $\frac{3( 2.5 )^{4} – 8( 2.5 )³ + 2}{12( 2.5 )²( ( 2.5 ) – 2 )}$ $x_{2}$ = 2.5 - $\frac{-5.8125}{37.5}$ $x_{2}$ = 2.5 - ( - 0.155 ) $x_{2}$ = 2.655 $x_{3}$ = $x_{2}$ - $\frac{3x^{4} – 8x³ + 2}{12x²( x – 2 )}$ $x_{3}$ = ( 2.655 ) - $\frac{3( 2.655 )^{4} – 8( 2.655 )³ + 2}{12( 2.655 )²( ( 2.655 ) – 2 )}$ $x_{3}$ = ( 2.655 ) - $\frac{1.344969}{55.405337}$ $x_{3}$ = 2.630725 $x_{4}$ = $x_{3}$ - $\frac{3x^{4} – 8x³ + 2}{12x²( x – 2 )}$ $x_{4}$ = ( 2.630725 ) - $\frac{3( 2.630725 )^{4} – 8( 2.630725 )³ + 2}{12( 2.630725 )²( ( 2.630725 ) – 2 )}$ $x_{4}$ = 2.630725 – 0.000704 $x_{4}$ = 2.630021 $x_{5}$ = $x_{4}$ - $\frac{3x^{4} – 8x³ + 2}{12x²( x – 2 )}$ $x_{5}$ = ( 2.630021 ) - $\frac{3( 2.630021 )^{4} – 8( 2.630021 )³ + 2}{12( 2.630021 )²( ( 2.630021 ) – 2 )}$ $x_{5}$ = ( 2.630021 ) - $\frac{0.000039}{52.294342}$ $x_{5}$ = 2.630021 – 0.000001 $x_{5}$ = 2.630020 $x_{6}$ = $x_{5}$ - $\frac{3x^{4} – 8x³ + 2}{12x²( x – 2 )}$ $x_{6}$ = ( 2.630020 ) - $\frac{3( 2.630020 )^{4} – 8( 2.630020 )³ + 2}{12( 2.630020 )²( ( 2.630020 ) – 2 )}$ $x_{6}$ = ( 2.630020 ) - $\frac{-0.000013}{52.29422}$ $x_{6}$ = ( 2.630020 ) – ( - 0.000000 ) $x_{6}$ = 2.630020 b) $x_{5}$ ≈ $x_{6}$ ≈ 2.630020
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.