Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.4 - Indeterminate Forms and l''Hospital''s Rule - 4.4 Exercises - Page 318: 84

Answer

a) $$ \begin{aligned} \lim _{R \rightarrow r^{+}} v &=\lim _{R \rightarrow r^{+}}\left[-c\left(\frac{r}{R}\right)^{2} \ln \left(\frac{r}{R}\right)\right] \\ &=-c r^{2} \lim _{R \rightarrow n^{+}}\left[\left(\frac{1}{R}\right)^{2} \ln \left(\frac{r}{R}\right)\right] \\ &=-c r^{2} \cdot \frac{1}{r^{2}} \cdot \ln 1\\ &=-c \cdot 0\\ &=0 \end{aligned} $$ As the insulation of a metal cable becomes thinner, the velocity of an electrical impulse in the cable approaches zero. b) $$ \begin{aligned} \lim _{r \rightarrow 0^{+}} v &=\lim _{r \rightarrow 0^{+}}\left[-c\left(\frac{r}{R}\right)^{2} \ln \left(\frac{r}{R}\right)\right]\\ &=-\frac{c}{R^{2}} \lim _{r \rightarrow 0^{+}}\left[r^{2} \ln \left(\frac{r}{R}\right)\right]\\ & \,\,\,\,\,[ \text{form is} \,\, 0 · \infty]\\ &=-\frac{c}{R^{2}} \lim _{r \rightarrow 0^{+}} \frac{\ln \left(\frac{r}{R}\right)}{\frac{1}{r^{2}}}\\ & \,\,\,\,\,[ \text{form is} \,\, \infty /\infty \,\, \text {and by using L'Hôpital's rule we have} ]\\ &=-\frac{c}{R^{2}} \lim _{r \rightarrow 0^{+}} \frac{\frac{R}{r} \cdot \frac{1}{R}}{\frac{-2}{r^{2}}}\\ &=-\frac{c}{R^{2}} \lim _{r \rightarrow 0^{+}}\left(-\frac{r^{2}}{2}\right)\\ &=0 \end{aligned} $$ As the radius of the metal cable approaches zero, the velocity of an electrical impulse in the cable approaches zero.

Work Step by Step

a) $$ \begin{aligned} \lim _{R \rightarrow r^{+}} v &=\lim _{R \rightarrow r^{+}}\left[-c\left(\frac{r}{R}\right)^{2} \ln \left(\frac{r}{R}\right)\right] \\ &=-c r^{2} \lim _{R \rightarrow n^{+}}\left[\left(\frac{1}{R}\right)^{2} \ln \left(\frac{r}{R}\right)\right] \\ &=-c r^{2} \cdot \frac{1}{r^{2}} \cdot \ln 1\\ &=-c \cdot 0\\ &=0 \end{aligned} $$ As the insulation of a metal cable becomes thinner, the velocity of an electrical impulse in the cable approaches zero. b) $$ \begin{aligned} \lim _{r \rightarrow 0^{+}} v &=\lim _{r \rightarrow 0^{+}}\left[-c\left(\frac{r}{R}\right)^{2} \ln \left(\frac{r}{R}\right)\right]\\ &=-\frac{c}{R^{2}} \lim _{r \rightarrow 0^{+}}\left[r^{2} \ln \left(\frac{r}{R}\right)\right]\\ & \,\,\,\,\,[ \text{form is} \,\, 0 · \infty]\\ &=-\frac{c}{R^{2}} \lim _{r \rightarrow 0^{+}} \frac{\ln \left(\frac{r}{R}\right)}{\frac{1}{r^{2}}}\\ & \,\,\,\,\,[ \text{form is} \,\, \infty /\infty \,\, \text {and by using L'Hôpital's rule we have} ]\\ &=-\frac{c}{R^{2}} \lim _{r \rightarrow 0^{+}} \frac{\frac{R}{r} \cdot \frac{1}{R}}{\frac{-2}{r^{2}}}\\ &=-\frac{c}{R^{2}} \lim _{r \rightarrow 0^{+}}\left(-\frac{r^{2}}{2}\right)\\ &=0 \end{aligned} $$ As the radius of the metal cable approaches zero, the velocity of an electrical impulse in the cable approaches zero.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.