Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.5 - Implicit Differentiation - 3.5 Exercises - Page 214: 1

Answer

a) $y' = \frac{10x}{3y^{2}}$ b) $y'=\frac{10x}{3(5x^2-7)^{2/3}}$

Work Step by Step

a) $5x^{2} - y^{3} = 7$ $10x - 3y^{2}(y') = 0$ $- 3y^{2}(y') = -10x$ $y' = \frac{-10x}{-3y^{2}}$ $y' = \frac{10x}{3y^{2}}$ b) $y^3=5x^2-7$ $y=\sqrt[3]{5x^2-7}$ $y'=\frac{10x}{3(5x^2-7)^{2/3}}$ c) We use (a) and (b): $y'=\frac{10x}{3(\sqrt[3]{5x^2-7})^2}=\frac{10x}{3(5x^2-7)^{2/3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.