Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.3 - Derivatives of Trigonometric Functions - 3.3 Exercises - Page 197: 17

Answer

$f'\left( w \right) = \frac{{2\sec w\tan w}}{{{{\left( {1 - \sec w} \right)}^2}}}$

Work Step by Step

$$\eqalign{ & f\left( w \right) = \frac{{1 + \sec w}}{{1 - \sec w}} \cr & {\text{Differentiating}} \cr & f'\left( w \right) = \frac{d}{{dw}}\left[ {\frac{{1 + \sec w}}{{1 - \sec w}}} \right] \cr & {\text{Use the quotient rule for derivatives }}\left( {\frac{g}{h}} \right)' = \frac{{hg' - gh'}}{{{h^2}}} \cr & {\text{Let }}g = 1 + \sec w{\text{ and }}h = 1 - \sec w,{\text{ then}} \cr & f'\left( w \right) = \frac{{\left( {1 - \sec w} \right)\left( {1 + \sec w} \right)' - \left( {1 + \sec w} \right)\left( {1 - \sec w} \right)'}}{{{{\left( {1 - \sec w} \right)}^2}}} \cr & {\text{Use the Derivatives of Trigonometric Functions }} \cr & f'\left( w \right) = \frac{{\left( {1 - \sec w} \right)\left( {\sec w\tan w} \right) - \left( {1 + \sec w} \right)\left( { - \sec w\tan w} \right)}}{{{{\left( {1 - \sec w} \right)}^2}}} \cr & f'\left( w \right) = \frac{{\left( {1 - \sec w} \right)\left( {\sec w\tan w} \right) + \left( {1 + \sec w} \right)\left( {\sec w\tan w} \right)}}{{{{\left( {1 - \sec w} \right)}^2}}} \cr & {\text{Multiply and simplify}} \cr & f'\left( w \right) = \frac{{\sec w\tan w - {{\sec }^2}w\tan w + \sec w\tan w + {{\sec }^2}w\tan w}}{{{{\left( {1 - \sec w} \right)}^2}}} \cr & f'\left( w \right) = \frac{{\sec w\tan w + \sec w\tan w}}{{{{\left( {1 - \sec w} \right)}^2}}} \cr & f'\left( w \right) = \frac{{2\sec w\tan w}}{{{{\left( {1 - \sec w} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.