Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.10 - Linear Approximations and Differentials - 3.10 Exercises - Page 258: 2

Answer

$L\left( x \right) = 3x + 1$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {e^{3x}},{\text{ }}a = 0 \cr & {\text{Evaluate }}f\left( x \right){\text{ at }}a = 0 \cr & f\left( 0 \right) = {e^{3\left( 0 \right)}} \cr & f\left( 0 \right) = 1 \cr & {\text{Differentiating the given function}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{e^{3x}}} \right] \cr & f'\left( x \right) = 3{e^{3x}} \cr & {\text{Evaluate }}f'\left( x \right){\text{ at }}a = 0 \cr & f'\left( 0 \right) = 3{e^{3\left( 0 \right)}} \cr & f'\left( 0 \right) = 3 \cr & {\text{The linear approximation at }}f\left( a \right){\text{ is given by: }}\left( {{}} \right){\text{ }} \cr & L\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right){\text{ }}\left( {\bf{1}} \right) \cr & {\text{Substituting }}f\left( 0 \right) = 1,{\text{ }}f'\left( 0 \right) = 3{\text{ and }}a = 0{\text{ into eq.}}\left( {\bf{1}} \right) \cr & L\left( x \right) = 1 + 3\left( {x - 0} \right) \cr & {\text{Simplifying}} \cr & L\left( x \right) = 1 + 3x \cr & or \cr & L\left( x \right) = 3x + 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.