Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 181: 8

Answer

$F'\left( t \right) = 3{t^2}$

Work Step by Step

$$\eqalign{ & F\left( t \right) = {t^3} + {e^3} \cr & {\text{Differentiate the function}} \cr & F'\left( t \right) = \frac{d}{{dt}}\left[ {{t^3} + {e^3}} \right] \cr & {\text{Use the constant multiple rule}} \cr & F'\left( t \right) = \frac{d}{{dt}}\left[ {{t^3} + {e^3}} \right] \cr & {\text{Use the sum diffence rules for differentiation }}\left( {{\text{See page 178}}} \right) \cr & F'\left( t \right) = \frac{d}{{dt}}\left[ {{t^3}} \right] + \frac{d}{{dt}}\left[ {{e^3}} \right] \cr & {\text{Apply the rules: }}\frac{d}{{dt}}\left[ {{t^n}} \right] = n{t^{n - 1}}{\text{ and }}\frac{d}{{dt}}\left[ c \right] = 0 \cr & F'\left( t \right) = 3{t^2} + 0 \cr & F'\left( t \right) = 3{t^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.