Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Review - Exercises - Page 272: 102

Answer

$\frac{dh}{dt} = \frac{8}{9\pi} \approx 0.283 cm/s$

Work Step by Step

Volume of a cone: $V = \frac{1}{3} \pi r^{2}h$ From proportions: $\frac{r}{h} = \frac{3}{10}$ Solve for $r$: $r = \frac{3}{10}h$ $V = \frac{1}{3} \pi (\frac{3}{10}h)^{2}h$ $V = \frac{3}{100} \pi h^{3}$ $\frac{dV}{dt} = \frac{3}{100} \pi 3h^{2} \times \frac{dh}{dt}$ $\frac{dV}{dt} = \frac{3}{100} \pi 3(5)^{2} \times \frac{dh}{dt}$ $\frac{dV}{dt} = \frac{9}{4} \pi \times \frac{dh}{dt}$ Given: $\frac{dV}{dt} = 2$ $2 = \frac{9}{4} \pi \times \frac{dh}{dt}$ Solve for $\frac{dh}{dt}$: $\frac{dh}{dt} = \frac{2}{\frac{9\pi}{4}}$ $\frac{dh}{dt} = \frac{8}{9\pi} \approx 0.283 cm/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.