Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Section 2.7 - Derivatives and Rates of Change - 2.7 Exercises - Page 150: 22

Answer

$-\frac{1}{8}$

Work Step by Step

Step 1: Simplify the difference quotient $\frac{f(x)-f(a)}{x-a}$. $\frac{f(x)-f(1)}{x-1}=\frac{\frac{1}{\sqrt{2x+2}}-\frac{1}{\sqrt{2\cdot 1+2}}}{x-1}=\frac{\frac{1}{\sqrt{2x+2}}-\frac{1}{2}}{x-1}=\frac{\frac{2-\sqrt{2x+2}}{2\sqrt{2x+2}}}{x-1}=\frac{2-\sqrt{2x+2}}{2(x-1)\sqrt{2x+2}}$ $=\frac{2-\sqrt{2x+2}}{2(x-1)\sqrt{2x+2}}\times \frac{2+\sqrt{2x+2}}{2+\sqrt{2x+2}}=\frac{4-(2x+2)}{2(x-1)\sqrt{2x+2}\cdot ({2+\sqrt{2x+2}})}=\frac{-2x+2}{2(x-1)\sqrt{2x+2}\cdot ({2+\sqrt{2x+2}})}$ $=\frac{-2(x-1)}{2(x-1)\sqrt{2x+2}\cdot ({2+\sqrt{2x+2}})}=\frac{-2}{2\sqrt{2x+2}\cdot ({2+\sqrt{2x+2}})}$ Step 2: Evaluate the limit $\lim\limits_{x \to a}\frac{f(x)-f(a)}{x-a}$. $\lim\limits_{x \to 1}\frac{f(x)-f(1)}{x-1}=\lim\limits_{x \to 1}\frac{-2}{2\sqrt{2x+2}\cdot ({2+\sqrt{2x+2}})}=\frac{-2}{2\sqrt{2\cdot 1+2}\cdot ({2+\sqrt{2\cdot 1+2}})}$ $=\frac{-2}{2\cdot 2\cdot (2+2)}=-\frac{1}{8}$ Step 3. Conclude $f'(a)$. $f'(1)=\lim\limits_{x \to 1}\frac{f(x)-f(1)}{x-1}=-\frac{1}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.