Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 2 - Problems Plus - Problems - Page 172: 5

Answer

(a) The limit does not exist. (b) $\lim\limits_{x \to 0} x~\lfloor 1/x \rfloor = 1$

Work Step by Step

(a) $\lim\limits_{x \to 0^+} \frac{\lfloor x \rfloor}{x}$ $=\lim\limits_{x \to 0^+} \frac{0}{x}$ $= 0$ $\lim\limits_{x \to 0^-} \frac{\lfloor x \rfloor}{x}$ $=\lim\limits_{x \to 0^-} \frac{-1}{x}$ $= \infty$ Since the left limit and the right limit are not equal, the limit does not exist. (b) Suppose $\frac{1}{n+1} \lt x \leq \frac{1}{n}$ for some positive integer $n$: Then $~~n+1 \gt \frac{1}{x} \geq n~~$ and $~~\lfloor 1/x \rfloor = n$ Then $~~\frac{n}{n+1} \lt x~\lfloor 1/x \rfloor \leq \frac{n}{n}$ $\frac{n}{n+1} \lt x~\lfloor 1/x \rfloor \leq 1$ Then: $\lim\limits_{x \to 0^+} x~\lfloor 1/x \rfloor = 1$ Suppose $-\frac{1}{n-1} \lt x \leq -\frac{1}{n}$ for some positive integer $n$: Then $~~-(n-1) \gt \frac{1}{x} \geq -n~~$ and $~~\lfloor 1/x \rfloor = -n$ Then $~~\frac{n}{n-1} \gt x~\lfloor 1/x \rfloor \geq \frac{n}{n}$ $\frac{n}{n-1} \gt x~\lfloor 1/x \rfloor \geq 1$ Then: $\lim\limits_{x \to 0^-} x~\lfloor 1/x \rfloor = 1$ Therefore: $\lim\limits_{x \to 0} x~\lfloor 1/x \rfloor = 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.