Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 16 - Section 16.8 - Stokes'' Theorem - 16.8 Exercise - Page 1201: 23

Answer

$$0$$

Work Step by Step

Stoke's Theorem can be defined as: $\iint_{S} curl F \cdot dS=\int_{C} F \cdot dr $ We will divide the sphere into upper and lower hemispheres, let us say $S_1, S_2$ , respectively. This implies that $C$ is a circle in the $xy$ plane oriented in the counter-clockwise direction. Therefore, $\iint_{S_1} curl F \cdot dS=\int_{C} F \cdot dr $ Now, we have: $\iint_{S_2} curl F \cdot dS=\int_{-C} F \cdot dr=-\int_{C} F \cdot dr $ This implies that $$\iint_{S} curl F \cdot dS=\iint_{S_1} curl F \cdot dS+\iint_{S_2} curl F \cdot dS \\=\int_{C} F \cdot dr-\int_{C} F \cdot dr \\=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.