Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 16 - Section 16.7 - Surface Integrals - 16.7 Exercise - Page 1192: 2

Answer

$18 \pi$

Work Step by Step

Since, $\iint_S F \cdot dS=\iint_S F \cdot n dS$ where, $n$ denotes the unit vector. and $dS=n dA=\pm \dfrac{(r_u \times r_v)}{|r_u \times r_v|}|r_u \times r_v| dA=\pm (r_u \times r_v) dA$ The flux through a surface can be defined only when the surface is orientable. Since, $\iint_S f(x,y,z) dS \approx \Sigma_{i=1}^n f(\overline(x), \overline(y), \overline(z)) AS_i$ Area of the upper and bottom part of the disk $=\pi(1)^2=\pi$; Area of each of the four quarter cylinders $=\dfrac{2 \pi r h}{24}=\dfrac{2 \pi \cdot 1 \cdot 2}{4}=\pi$ Thus, we have $\iint_S F(x,y,z) dS =\pi[2+2+3+3+4+4]=18 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.