Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Problems Plus - Page 1122: 8

Answer

$$\frac{\pi}{2} \ln \pi$$

Work Step by Step

$$ \begin{aligned} \int_{0}^{\infty} \frac{\arctan \pi x-\arctan x}{x} d x &=\int_{0}^{\infty}\left[\frac{\arctan y x}{x}\right]_{y=1}^{y=\pi} d x \\ & =\int_{0}^{\infty} \int_{1}^{\pi} \frac{1}{1+y^{2} x^{2}} d y d x \\ &=\int_{1}^{\pi} \int_{0}^{\infty} \frac{1}{1+y^{2} x^{2}} d x d y \\ &=\int_{1}^{x} \lim _{t \rightarrow \infty}\left[\frac{\arctan y x}{y}\right]_{x=0}^{x-t} d y \\ &=\int_{1}^{\pi} \frac{\pi}{2 y} d y \\ &=\frac{\pi}{2}[\ln y]_{1}^{\pi} \\ &=\frac{\pi}{2} \ln \pi \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.