Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Problems Plus - Page 1121: 2

Answer

$e-1$

Work Step by Step

By Fubini's Theorem, $$\int_{0}^{1}\int_{0}^{1}e^{\max\{x^2,y^2\}}dydx=\iint_R e^{\max\{x^2,y^2\}}dA$$ Here, $$R=\{(x,y):0\leq x\leq 1,0\leq y\leq 1\}$$ We can divide $R$ into the triangles $T_1=\{(x,y):0\leq x\leq 1,0\leq y\leq x\}$ and $T_2=\{(x,y):0\leq y\leq 1,0\leq x\leq y\}$. It follows that $$\iint_R e^{\max\{x^2,y^2\}}dA=\iint_{T_1} e^{\max\{x^2,y^2\}}dA+\iint_{T_2} e^{\max\{x^2,y^2\}}dA$$ Notice that $$(x,y)\in T_1 \Rightarrow x\geq y\geq 0 \Rightarrow x^2\geq y^2\Rightarrow \max\{x^2,y^2\}=x^2$$ Similarly, $$(x,y)\in T_2 \Rightarrow y\geq x\geq 0 \Rightarrow y^2\geq x^2\Rightarrow \max\{x^2,y^2\}=y^2$$ It follows that $$\iint_{T_1} e^{\max\{x^2,y^2\}}dA+\iint_{T_2} e^{\max\{x^2,y^2\}}dA= \iint_{T_1} e^{x^2}dA+\iint_{T_2} e^{y^2}dA$$ $$=\int_{0}^{1}\int_{0}^{x}e^{x^2}dydx+\int_{0}^{1}\int_{0}^{y}e^{y^2}dxdy=\int_{0}^{1}e^{x^2}\int_{0}^{x}dydx+\int_{0}^{1}e^{y^2}\int_{0}^{y}dxdy$$ $$=\int_{0}^{1}xe^{x^2}dx+\int_{0}^{1}ye^{y^2}dy=\int_{0}^{1}2xe^{x^2}dx=e^{1^2}-e^{0^2}=e-1$$ Thus, $$\int_{0}^{1}\int_{0}^{1}e^{\max\{x^2,y^2\}}dydx=e-1$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.