Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 14 - Section 14.5 - The Chain Rule. - 14.5 Exercise - Page 992: 30

Answer

$\dfrac{\partial u}{\partial \alpha} =4e^{-4} \\ \dfrac{\partial u}{\partial \beta} =-7e^{-4} \\ \dfrac{\partial u}{\partial \gamma} =-24e^{-4} $

Work Step by Step

$\dfrac{\partial u}{\partial \alpha} =e^{-4} \dfrac{\partial x}{\partial \alpha} -2e^{-4}\dfrac{\partial y}{\partial \alpha} +8e^{-4} \dfrac{\partial t}{\partial \alpha} $ Plug the values $\alpha=-1;\beta=2; \gamma=1$. $\dfrac{\partial u}{\partial \alpha} =e^{-4} \dfrac{\partial x}{\partial \alpha} -2e^{-4}\dfrac{\partial y}{\partial \alpha} +8e^{-4} \dfrac{\partial t}{\partial \alpha} =4e^{-4} $ $\dfrac{\partial u}{\partial \beta} =(e^{-4}) \dfrac{\partial x}{\partial \alpha} -(2e^{-4}) \dfrac{\partial y}{\partial \beta} +(8e^{-4}) \dfrac{\partial t}{\partial \beta} $ Plug the values $\alpha=-1;\beta=2; \gamma=1$. $\dfrac{\partial u}{\partial \beta} =(e^{-4}) \dfrac{\partial x}{\partial \alpha} -(2e^{-4}) \dfrac{\partial y}{\partial \beta} +(8e^{-4}) \dfrac{\partial t}{\partial \beta} =-7e^{-4} $ $\dfrac{\partial u}{\partial \gamma} =e^{-4} \dfrac{\partial x}{\partial \gamma} -2e^{-4}\dfrac{\partial y}{\partial \gamma} +8e^{-4} \dfrac{\partial t}{\partial \gamma} $ Plug the values $\alpha=-1;\beta=2; \gamma=1$. $\dfrac{\partial u}{\partial \gamma} =(e^{-4}) \dfrac{\partial x}{\partial \gamma} -(2e^{-4}) \dfrac{\partial y}{\partial \gamma} +(8e^{-4}) \dfrac{\partial t}{\partial \gamma} =-24e^{-4} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.