Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 13 - Section 13.3 - Arc Length and Curvature - 13.3 Exercise - Page 914: 52

Answer

$$ T(0)=\langle 0, 1, 0 \rangle $$ $$ \begin{aligned} \mathrm{N}(0) &=\left\langle \frac{-1}{\sqrt{2}},0 ,\frac{-1}{\sqrt{2}} )\right\rangle \end{aligned} $$ $$ \begin{aligned} \mathbf{B}(0)=\left\langle \frac{-1}{\sqrt{2}},0 ,\frac{1}{\sqrt{2}} )\right\rangle\\ \end{aligned} $$

Work Step by Step

We have the curve $$ \mathbf{r}(t)=\left\langle\cos t_{,} \sin t, \ln \cos t\right\rangle $$ At $t=0$, we find that: $$ \mathbf{r}(0)=\left\langle\cos t_{,} \sin (0), \ln \cos (0)\right\rangle= \left(1, 0, 0 \right) $$ We first compute the ingredients needed for the unit normal vector: $$ r^{\prime}(t) =\left\langle -\sin t, \cos t, -\tan t \right\rangle $$ $\Rightarrow$ $$ \begin{aligned} \left|r^{\prime}(t)\right|&=\sqrt{(- \sin t)^{2}+( \cos t)^{2}+(-\tan t)^{2}}\\ &=\sqrt{1+(\tan t)^{2}}\\ &=\left|\sec(t)\right| \end{aligned} $$ Assume $-\frac{\pi}{2}\lt t \lt \frac{\pi}{2} $; then $\left|r^{\prime}(t)\right|= \sec(t) $ Then, the unit tangent vector $T(t)$ is given by: $$ \begin{aligned} T(t) &=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}\\ &=\frac{1}{\sec(t) }\left\langle -\sin t, \cos t, -\tan t \right\rangle\\ &=\frac{\left\langle -\sin t, \cos t, -\tan t \right\rangle}{\sec(t)}\\ &=\left\langle -\sin t \cos t, (\cos t)^{2}, -\sin t \right\rangle \end{aligned} $$ at the given point, corresponding to $t=0$, we find that: $$ \begin{aligned} T(0) &=\left\langle -\sin (0) \cos (0), (\cos (0))^{2}, -\sin (0) \right\rangle \\ &=\left\langle 0, 1, 0 \right\rangle \\ \end{aligned} $$ Then, we can find: $$ \begin{aligned} \mathbf{T}^{\prime}(t)&=\langle-[(\sin t)(-\sin t)+(\cos t)(\cos t)], 2(\cos t)(-\sin t),-\cos t) \\ &=\left\langle\sin ^{2} t-\cos ^{2} t,-2 \sin t \cos t,-\cos t\right\rangle \end{aligned} $$ $\Rightarrow$ $$ \begin{aligned} \left|\mathrm{T}^{\prime}(t)\right|& =\sqrt{\left(\sin ^{2} t-\cos ^{2} t\right)^{2}+(-2 \sin t \cos t)^{2}+(-\cos t)^{2}} \end{aligned} $$ Then, the principal unit normal vector $N(t)$ is given by: $$ \begin{aligned} \mathrm{N}(t)&=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|} \\ &=\frac{\left\langle\sin ^{2} t-\cos ^{2} t,-2 \sin t \cos t,-\cos t\right\rangle}{\sqrt{\left(\sin ^{2} t-\cos ^{2} t\right)^{2}+(-2 \sin t \cos t)^{2}+(-\cos t)^{2}}} \\ & \ \ \ \ \ \text{corresponds to} \ \ t=0,\\\ \mathrm{N}(0) &=\frac{\left\langle\sin ^{2} (0)-\cos ^{2} (0),-2 \sin (0) \cos (0),-\cos (0)\right\rangle}{\sqrt{\left(\sin ^{2} (0)-\cos ^{2} (0)\right)^{2}+(-2 \sin(0) \cos(0))^{2}+(-\cos (0))^{2}}}\\ &=\frac{\left\langle -1,0 ,-1)\right\rangle}{\sqrt{1+0+1}}\\ &=\frac{\left\langle -1,0 ,-1)\right\rangle}{\sqrt{2}}\\ &=\left\langle \frac{-1}{\sqrt{2}},0 ,\frac{-1}{\sqrt{2}} )\right\rangle. \end{aligned} $$ The binormal vector $\mathbf{B}(0)$ is given by: $$ \begin{aligned} \mathbf{B}(0)=\mathbf{T}(0) \times \mathbf{N}(0)&=\left[\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 0 \\ \frac{-1}{\sqrt{2}}, &0 & \frac{-1}{\sqrt{2}}\\ \end{array}\right]\\ &=\left\langle \frac{-1}{\sqrt{2}},0 ,\frac{1}{\sqrt{2}} )\right\rangle.\\ \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.