Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.9 - Representations of Functions as Power Series - 11.9 Exercises - Page 793: 9

Answer

$\sum_{n = 0}^{\infty}\frac{(-1)^n x^{4n+2}}{2^{4n+4}}$ Interval: $(-2, 2)$

Work Step by Step

f(x) = $\frac{x^2}{x^4 + 16}$ = $\frac{x^2}{2^4} (\frac{1}{1+(\frac{x}{2})^4}) $ = $\frac{x^2}{2^4} (\frac{1}{1-(-1)(\frac{x}{2})^4})$ = $\frac{x^2}{2^4} \sum_{n = 0}^{\infty} \frac{(-1)^n x^(4n)}{2^(4n)}$ = $\sum_{n = 0}^{\infty} \frac{(-1)^n x^{4n+2}}{2^{4n+4}}$ Interval: The series converges when |$\frac{x^4}{2^4}$|<1, hence when |$x^4$| < $2^4$, so $R = 2$, Interval = $(-2, 2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.