Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.10 - Taylor and Maclaurin Series - 11.10 Exercises - Page 809: 67

Answer

$\frac{1}{2}$

Work Step by Step

$ln(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+....+\frac{x^{n}}{n}$ Plug into the limit to get $\lim\limits_{x \to 0}\frac{x-ln(1+x)}{x^{2}}=\lim\limits_{x \to 0}x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+....+\frac{x^{n}}{n}$ $=\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.